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The bursting mechanism in two different high-Reynolds-number boundary layers 
has been analysed by means of conditional sampling. One boundary layer develops 
on a smooth, flat plate in zero pressure gradient; the other, also in zero pressure 
gradient, is perturbed by a rough-to-smooth change in surface roughness and the new 
internal layer has not yet recovered to the local equilibrium condition a t  the 
measurement station. Sampling on the instantaneous uv signal in the logarithmic 
region confirms the presence of two related structures, ‘ejections’ and ‘sweeps’ 
which, in the smooth-wall layer, appear to be responsible for most of the turbulent 
energy production, and to effect virtually all that part of the spectral energy transfer 
that is universal. Ejections show features similar to those of Falco’s ‘typical eddies ’ 
while sweeps appear to be inverted ejections moving down towards the wall. The 
inertial structures associated with ejections show attributes of the true universal 
motion (Townsend’s ‘attached’ eddies) of the inner layer and these are therefore 
identified as ‘bursts ’. In the outer layer, these become ‘detached ’ from the wall. The 
large-scale structures associated with sweeps also appear to be ‘detached ’ eddies 
(‘splats ’), but these induce low-wave-number inactive motion near the wall and this 
is not universal even though the sweep itself is. Neither ejections nor sweeps detected 
in the rough-to-smooth layer are near a condition of energy equilibrium. The relation 
of ejections and sweeps to the law of the wall and other accepted laws is discussed. 

1. Introduction 
According to the ‘law of the wall’ (Coles 1955, 1956), the mean velocity in the inner 

layer of a turbulent wall flow (y/6 < 0.2) scales on the friction velocity, u, = (T,/p)i, 
where T, is the wall shear stress, the distance from the surface, y and the kinematic 
viscosity, v. Outside the viscous sublayer and buffer layer (y* = yu,/v > 30), the 
motion scales on u, and y only: application of this scaling to the turbulent energy 
equation, leads to the ‘local equilibrium ’ approximation, production = dissipation 
(Townsend 1961). (Townsend also discusses an extension of the analysis, in which the 
local value of (T/p) i  N (-m)i is used instead of u, where T varies with y). Ui, 
ui (i = 1,2,3) are the mean and fluctuating components of velocity (U ,  u)  in 
2-(streamwise) direction ; V ,  v in the y-direction (normal to the wall) and W ,  w in the 
z- (spanwise) direction. 
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It is well known that most of the turbulent shear stress in the inner layer, and 
therefore most of the production of turbulent energy, occurs in ‘ejections ’ - short 
regions of intense turbulent activity with velocity fluctuations u < 0, v > 0. The 
remainder occurs mainly in ‘sweeps‘ (Corino & Brodkey 1969), u > 0, v < 0 whose 
relationship with ejections is close but not simple (Offen & Kline 1974, 1975). The 
word ‘burst ’ is sometimes used for ‘ejection ’ : here we call the complete sequence of 
outward moving fluid a ‘burst’ (Kim, Kline & Reynolds 1971) although, as a 
consequence of the present results, we attempt a more rigorous definition in $5 .  The 
interaction of the inner and outer layers is dominated by the transport of energy, 
momentum and vorticity that is effected by ejections (Kline et al. 1967) and this 
interaction in turn determines u,, a universal velocity scale for the shear-stress- 
bearing motion of both layers. 

The initiation of bursts in and just above the sublayer is not studied here: 
however, in a previous paper (Morrison & Bradshaw 1989), we examined the role of 
wall shear stress fluctuations during ejections and sweeps and the substantive results 
are used here. The aim of the present paper is to examine the related question of the 
relationship between ejections, sweeps and the accepted laws for the boundary layer. 

The law of the wall is incorporated, in some form, in all Reynolds-averaged models 
for turbulent stresses. It is, of course, a first approximation : the observation that the 
u- and w-component turbulent intensities do not scale on u, and y was explained by 
Townsend as the influence of the outer-layer large-eddy structure on the equilibrium 
layer. This ‘inactive’ motion is of low wavenumber compared to the universal inner- 
layer motion and is therefore not likely to interact with it. Also, being largely 
confined to the (z,z)-plane with v N 0, i t  does not contribute to the shear-stress, 
-pm, in the inner layer and therefore is not involved in the extraction of energy 
from the mean flow there nor the transfer of energy to the smaller eddies. A more 
detailed understanding of inner-layer motion is needed for difficult cases like flow 
near separation, or for the formulation of simplified wall boundary conditions for 
‘large-eddy ’ simulations of turbulent flow. In  the latter, large-scale eddies are 
computed as solutions of the time-dependent Navier-Stokes equations, but small- 
scale eddies are modelled throughout the flow, the model being most critical in the 
sublayer and buffer layer where all the eddies are ‘small’. 

Most previous studies have considered only boundary layers or duct flows on 
smooth surfaces. The present work explores the burst structure of two high- 
Reynolds-number boundary layers both in zero pressure gradient. One is a smooth- 
wall layer ; the other initially develops over a rough surface and then passes onto a 
smooth surface. I n  the ‘rough-to-smooth ’ layer, the value of u, a t  the smooth-wall 
measurement station is approximately the same as that in the smooth-wall layer, so 
that the viscous lengthscale, v/u,, is much the same. However, the ratio of typical 
outer-layer turbulent intensity to  inner-layer intensity in the smooth part of the 
rough-to-smooth layer is approximately double that in the smooth-wall layer, 
therefore permitting the study of an inner layer in which the inactive motion is 
particularly intense. The underlying philosophy of these experiments is the same as 
Clauser’s (1956) ‘ black-box ’ analogy in which a self-preserving shear layer is 
suddenly perturbed and its behaviour observed as it asymptotes to a new self- 
preserving state. 

The ‘VITA+ LEVEL ’ conditional-sampling scheme of Morrison, Tsai & Bradshaw 
(1989) is used to study the shear-stress-bearing motion of both boundary layers. 
Briefly, the purpose of conditionally sampling a time-dependent signal, f ( t ) ,  is to 
generate an on-off signal, c ( t ) ,  which is equal to one at times whenf(t) satisfies some 
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arbitrary criterion as being ‘interesting ’ and zero at  other times. The criterion relies 
on the prejudices of the user and a very simple one would bef(t) > P where F is the 
pre-chosen threshold value. The ‘contribution’ to the conventional mean is c ( t )  f ( t )  
and the ‘event average’ is c ( t ) f ( t ) / c ( t )  =fT) (notation from Kovasznay, Kibens & 
Blackwelder 1970). Computer recognition of ejections and sweeps is notoriously 
difficult and the choice of sampling signal and thresholds is crucial. Here, the 
VITA +LEVEL algorithm is applied to the instantaneous uw signature (because 
calculation methods require satisfactory modelling of m in particular) using 
thresholds that are universal multiples of the local value of -?ED. See Morrison et al. 
(1989). Chen & Bradshaw (1990) have also shown that the scheme gives an almost 
one-to-one correspondence with visually identified peaks in the instantaneous 
contours of uw in the (z,z)-plane from simulated-channel-flow data. In spite of its 
apparent success, the final test of such a scheme is that the hypothesized structures 
should be consistent with the logarithmic and defect laws, at  least to a first 
approximation. The Reynolds number of both boundary layers is above 5000 so that 
they are both virtually unaffected by the viscous superlayer (Murlis, Tsai & 
Bradshaw 1982) and the defect law can properly be expected to hold : any structure 
that obeys viscous scaling and is at  y* > 30 cannot contribute directly to TED. 

Conversely, any structure that obeys outer layer scaling (u,S) cannot, as we have 
seen, contribute directly to TZV in the inner layer if the law of the wall is to hold. In 
the rough-to-smooth layer, the log law is apparently obeyed while the event statistics 
indicate significant advection and diffusion of turbulent energy that violate the local 
equilibrium approximation. 

Bursting predominates in the buffer region (10 < y* < 30) and its relevance to the 
present measurements made in the logarithmic region (and further from the wall) lies 
in the observation, made by Offen & Kline (1974), that each ‘lift-up’ of a sublayer 
‘streak’ is associated with a disturbance in the logarithmic region. Offen & Kline’s 
study indicated the possibility that bursts and sweeps are related in a cyclic fashion : 
the interaction of bursts with fluid in the logarithmic region produces sweeps which 
influence the generation of bursts further downstream. They also observed that a 
sweep was related to a region of high shear in the logarithmic region produced by 
what appeared to be either a spanwise vortex or an upward-tilted streamwise vortex 
(i.e. part of a ‘hairpin ’ vortex). The effect of bursts on the motion in the logarithmic 
region was to produce another sweep linked to the burst by the vortex-like structure. 
Offen & Kline (1975) suggested that the formation of a spanwise vortex near the wall 
results from the relative motion between a burst and the replacement fluid required 
by continuity. This would suggest that a locally-adverse pressure gradient either 
produces, or is produced by, the observed lift-up : the role of pressure fluctuations in 
bursting is examined in a companion paper by Morrison, Subramanian & Bradshaw 
(1992). 

Falco (1977) showed that ‘typical eddies ’ produce most of the shear stress in the 
outer layer (and therefore also in the inner layer). Subsequently, Falco (1979, 1980) 
showed that ‘pockets ’ or large-eddy ‘footprints ’, formed by the convection of 
typical eddies towards the wall by the downstream face of the large-scale structure, 
are responsible for the initiation of bursting just above the sublayer in a way that is 
reminiscent of the burst-sweep cycle proposed by Offen & Kline. More recently, 
several workers (see the review by Hunt 1988) with the aid of channel simulation 
data, have been able to trace spatially compact, organized structures for a long 
streamwise extent, suggesting that they diffuse slowly. Falco (1974) observed typical 
eddies that persisted for streamwise distances of up to 158. 

____ 
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Theodorsen (1952) first postulated that the hairpin or ‘horseshoe’ vortex is the 
dominant flow mechanism in turbulent shear flows. He suggested that the primary 
hairpins are aligned in the direction of maximum mean strain rate (the principal axis) 
at 45” to the mean flow direction so that turbulent energy production is maximized. 
Until fairly recently, these ideas had only qualitative support : for example, the wall- 
pressure/spanwise velocity (pw) correlations of Willmarth & Tu (1967) who 
hypothesized a pattern of ‘swept-back ’ vorticity near the wall. The ‘double-cone ’ 
eddy of Townsend (1976) can also be thought of as a hairpin vortex without the 
spanwise connecting loop. More recently, channel simulation data (Moin & Kim 
1985; Kim & Moin 1986) and simulations of homogeneous turbulence (Rogers & Moin 
1987), all a t  low Reynolds numbers, tend to  support Theodorsen’s theory. However, 
Guezennec, Piomelli & Kim (1987) and Robinson (1990) have shown that complete, 
near-symmetrical horseshoes are rare : more common are j-shaped (‘arch-like’) 
vortices, in effect a horseshoe with one leg replaced by more diffuse vorticity. 

Direct support for the presence of horseshoe vortices a t  low to relatively high 
Reynolds numbers comes from the flow-visualization experiments of Head & 
Bandyopadhyay (1981) who observed horseshoes inclined at  45”. At their highest 
Reynolds number based on momentum thickness, Re, = 9400, they noted that there 
were noticeably fewer hairpins in the outer layer and that there was no conclusive 
evidence to link near-wall eruptions with the inclined vortex loops in the outer layer. 
If one accepts the view that Falco’s typical eddies are a section in the (z,y)-plane 
through the tip of a horseshoe, then Falco’s flow visualization experiments endorse 
the belief that horseshoes or typical eddies exist in both the inner and outer layers 
for 1000 <Re,  < 10000 and that their dimensions are strongly Reynolds-number 
dependent when non-dimensionalized by the boundary-layer thickness, 6, but less so 
when non-dimensionalized by v/u,. These Reynolds-number variations are consistent 
with the view put forward by Murlis et al. (1982), that  a t  low Reynolds number, large 
eddies or horseshoes and typical eddies (a section through the horseshoe tip) 
accomplish a similar degree of momentum transport, while a t  high Reynolds 
numbers, the contribution by the large eddies increases and that of typical eddies 
decreases. As the Reynolds number increases, vortex stretching reduces the diameter 
of the horseshoe while increasing the overall streamwise length of the vortex, 
although Kim et al. (1971) have suggested that only the legs of the hairpin, and not 
the tip, are stretched. 

Moin, Leonard & Kim (1986) have also investigated Falco’s (1983 ; see also Chu & 
Falco 1988) claim of the appearance of vortex rings (which Falco calls typical eddies) 
in the outer layer by calculating the Biot-Savart induction caused by a parabolic 
vortex subject to a shear and the impermeability constraint independently. The 
vortex was observed to pinch off to form a ring. They also simulated a vortex 
sheet subjected to an upward perturbation (as in an ejection) in a channel flow. 
Their calculations show the evolution of a horseshoe vortex, the tip of which again 
pinches off into a vortex ring. We esttimate their value of Re, to  be about 800 and 
pinching occurs at a time, t ,  after the initiation of the calculation corresponding to 
tU,/(u/u,) x 7500 or tUJ6 x 42 where U, is the channel centreline velocity. This time 
is roughly four times the expected large-eddy lifetime so that even at this low 
Reynolds number, pinching could be expected to be a relatively rare phenomenon. 
Furthermore, as Moin et al. indicate, the actual closing of the vortex ring involves 
significant viscous diffusion which would be dominated by inertial effects of high 
Reynolds numbers. But Head & Bandyopadhyay (1981) have pointed out that 
pairing of horseshoe vortices in the wall region could considerably increase the range 
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FIGURE 1.  Schematic diagram of rough-to-smooth flow and table of integral parameters. 

of eddy sizes: this effect is not included in Moin et al.’s simulations so that our 
estimates could be regarded as unduly pessimistic. Yet Robinson (1991) shows that 
horseshoe vortices are so asymmetric that it is difficult to see how the symmetrical 
phenomenon of pinch-off could occur. The possible similarity between ejections and 
sweeps and Falco’s typical eddies is discussed in $3. 

2. Description of the boundary layers 
Details of the zero-pressure-gradient smooth-wall boundary layer can be found in 

any standard text (e.g. Ligrani 1989). Our measurements of conventionally averaged 
statistics, even third- and fourth-order velocity products, are closely self-preserving 
and agree well with those of other authors e.g. Klebanoff (1954); Andreopoulos 
(1978). The experimental procedures, and data acquisition and reduction techniques 
are all described by Morrison et al. (1989) except those for the surface-mounted hot 
wire which are described by Morrison & Bradshaw (1989). The design and use of the 
four-wire array used to make low-wave-number measurements of spanwise 
components of fluctuating strain rate (sI2) and vorticity (us) are described by 
Subramanian, Kandola & Bradshaw (1985). 

Figure 1 shows the development of the rough-to-smooth layer and the position of 
the measurement station, B relative to the change of surface (‘step’) at A .  The 
boundary layer develops on the smooth wall over an additional fetch of 1495 mm. 
The roughness is an array of uniformly distributed 13mm cubes. The integral 
parameters just upstream of the step were estimated rather than measured directly ; 
those at B were measured. OA is deduced from 8, by integrating the momentum 
integral equation between A and B using measured values of skin-friction coefficient, 
C,. At A ,  the wake profile parameter, n, was taken to be 0.6 from which values of 
displacement thickness, S* and 6 can be deduced using the wake function of Coles & 
Hirst (1968). C f , A  was taken to be (28/x),, where x is measured from the beginning 
of the roughness. Note that the deduced value of eA assumes the validity of the log 
law implicit in the measurements of C, between A and B made with a Preston tube. 

Townsend (1966) describes the boundary layer following a step change in surface 
roughness as being in ‘moving equilibrium ’, that is, in a state which is locally self- 
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In y* 

FIGURE 2. Mean velocity profile and Clauser plot of rough-to-smooth boundary layer a t  B. 
-, U/u, = ( l / ~ ) I n y * + C .  K = 0.41, C = 5.2. 

preserving but where lengthscales and velocity scales change slowly with xs, the 
streamwise fetch measured downstream from the step. His analysis assumes not only 
that the ratio of x, to  the internal layer thickness is large but also that there is a near- 
wall region which is in local equilibrium. The measurements of Antonia & Luxton 
(1972) following a rough-to-smooth step show that significant advection and 
diffusion near the wall invalidate the local-equilibrium approximation, which 
explains why their distributions of mean velocity and shear stress in the inner layer 
are not self-preserving, even in the last measurement station, x, = 16.1 atg5. 

The best measure of the strength of the surface change is indicated by the ratio of 
wall lengthscales, namely 

MRS = ln ( ~ 0 . 4 / ~ 0 , ) ~  (2.1) 

where Z,, and Z,, are the wall lengthscales defined by the logarithmic law : 

u 1  
- = -In (y/Z,) 
u, K 
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FIQURE 3. Shear stress profiles, T = -pm. 0,  smooth; 0,  rough-to-smooth. 
t, wall shear stress (Preston tube). 
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FIGURE 4. Shear correlation coefficient, R12. Symbols as in figure 3. 

for rough and smooth walls respectively, where K is the von Karmdn constant. Our 
value ofM,, is 4.25, evaluated at x, = 15.46&,: Antonia & Luxton’s value a t  their 
last measurement position is 5.8 so that our experiment represents a somewhat 
weaker perturbation. Schofield (1981) has made an extensive analysis of data taken 
in both rough-to-smooth and smooth-to-rough configurations and suggest that  for 
the former, departures from true wall similarity will be small only for x, > 206&,. 
This suggests that  our data do not conform to Townsend’s moving-equilibrium 
condition and that in the inner layer of the internal layer, advection and y-wise 
diffusion of energy are still significant. In fact, figure 2 indicates that  the thickness 
of the inner layer is roughly 5 mm so that only one or possibly two points of the hot- 
wire traverses lie within the approximate local-equilibrium region. A complete 
energy balance for this layer is given in a companion paper by Morrison & Bradshaw 
(1992) who examine the y-wise diffusion of energy and heat when the internal layer 
is slightly heated. 

Figures 3 and 4 show the shear-stress profiles and shear correlation coefficients for 
both boundary layers as an illustration of the perturbation of the rough-to-smooth 
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inner layer by inactive motion. Thus the increased u- (and w-) component motion in 
the rough-to-smooth inner layer is responsible for the reduction in R,, below the 
smooth-wall value. 

Figure 5 shows the u- and v-component power spectra ($,, and $22 and respectively) 
together with the uv cross-spectrum for the near-wall motion of both boundary 
layers, scaled using m and y and taking the local mean streamwise velocity as the 
convection velocity. Integrals of the scaled spectra yield the appropriate Reynolds 
stress divided by -m. The arguments outlined in the previous section imply that 
these spectra obtained at  points in the logarithmic region are similar above those 
wavenumbers at which the inactive motion becomes effective and below those 
wavenumbers at which the motion begins to be affected by viscosity, 

0.3 < o y / U  = k , y  < 5.0. 

The smooth-wall spectra all collapse except the one at y / 6  = 0.17, but the rough-to- 
smooth spectra collapse only at the two smallest values of y / S .  Those $,, spectra 
which collapse are accurately universal down to low wavenumbers (smooth, 
k,  y N 0.070; rough-to-smooth, k,  y N 0.035) : there is a slight increase in density a t  
low k ,  in the rough-to-smooth spectrum - evidence of the strong inactive motion in 
the inner layer. The low-wave-number part of the spectra, and to a lesser extent 
that of the g522 spectra, show gross non-similarities as a result of inactive motion. This 
part of the $,, spectra also reveals the largest difference between the spectra for the 
two layers. 

$,, and $22 are also both universal a t  wavenumbers typical of the inertial 
subrange. The solid line represents the usual subrange relation assuming local 
equilibrium, namely 

(2.3) 
C 

-my KH 
$11 ( k , )  = 3(k ,y ) -g .  

Here C = 0.5: a similar expression applies to $22, with $,, = #,,. Bradshaw ( 1 9 6 7 ~ )  
shows spectra obtained in the outer layer of boundary layers in both zero and adverse 
pressure gradients scaled using -;lm and 8. For outer-layer spectra, the collapse a t  
wavenumbers typical of the inertial subrange is not as good as that in the inner layer, 
suggesting that spectral energy transfer is only approximately universal in the outer 
layer, that is, it is not quite independent of y and only nearly proportional to 

Both Bradshaw ( 1 9 6 7 ~ )  and Tennekes & Lumley (1972) have examined the 
conditions necessary for the existence of an inertial subrange. Both show that a k-: 
region is possible while relaxing the condition that the spectral transfer of energy 
equals the dissipation, E.  It is a sufficient condition (and the only one that necessarily 
follows from the form of the inertial subrange law) that sources and sinks within the 
subrange are small compared with the total dissipation, rather than requiring that 
the motion be completely isotropic, that is, with a spectral shear correlation 
coefficient R, , (k , )  = 0. Bradshaw suggests that the Reynolds number based on the 
Taylor microscale, Re,, > 100 for a subrange with first-order local isotropy: our 
measurements show that Re,, 2: 160 for traverse points closest to the wall (y* N 250) 
in both layers. At the low-wavenumber end of the subrange (say, k ,  y N 1.8), 
R12(k,)  = 0.34 and 0.26 in the smooth and rough-to-smooth layers respectively, 
falling rapidly with increasing k,. Mestayer (1982)  shows that, in an ‘expected’ 
inertial subrange deduced by a small overlap in the production and dissipation 
spectra, the -8 law is approximately obeyed and R, , (k , )  N 0.1. The -% slope is 
accurately obeyed over a small range of higher wavenumbers in which R12( k, )  = 0 and 

( -rn)i/d. 
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FIGURE 6. Space-time velocity correlation coefficients with vertical separations R,,, R,,, R,,, Rz2. 
First subscript refers to 'fixed' probe at y/S = 0.051. Second subscript refers to 'moving' probe 
r, /S = 0.013. 

the production spectrum tails off to zero. Saddoughi et al. (1991) have recently 
shown that, in a boundary layer of 1 m thickness where Re, N 3 x lo5, g511 shows two 
decades of -: with only the second (at  higher wavenumber) having Rl,(k,) 
acceptably close to zero. Direct numerical simulation (DNS) has enabled a closer 
study of inertial energy transfer in isotropic turbulence - necessarily at low Reynolds 
number - (Domaradzki & Rogallo 1990; Yeung & Brasseur 1991), although there is 
as yet no unanimity on whether the scales involved or the triadic interactions are 
local or not. The results of Yeung & Brasseur, however, suggest that non-local triadic 
interactions cause anisotropy of the dissipative scales of motion which persists a t  
high Reynolds number. 

Figure 6 shows smooth-wall space-time correlations, Ric(rz ; 7), in which the hot 
wires are separated vertically: the lower wire is at y/6 = 0.051 and the separation, 
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r,/6 is 0.073. Similar results were obtained for larger separations up to r,/6 = 0.432, 
but a t  even larger separations, the correlations are too small for a reliable 
interpretation to be made. Positive time delay, 7 ,  corresponds to downstream 
displacement of the upper probe relative to the lower one. The correlation subscripts 
are such that the first refers to the lower probe. Both R,, and R,, are skewed to 
positive time delay, an indication of the prevalence of structures inclined at a 
positive angle to the x-axis; the former actually peaks at 7Ue/6 = 0.25, a delay 
equivalent to an inclination of about 16' to the x-axis. R,, and (to a lesser extent) R,, 
can be taken as illustrations of the motion of the large-scale structure. R,, and R,, 
are also anti-symmetric but give a qualitative indication of ejections and sweeps 
since they are both negative for all 7 .  R,, is negatively skewed, consistent with an 
eruption (+w) near the wall correlating with upstream fluid of low momentum 
further from the wall (quadrant 2 in the (u, w)-plane), or the high momentum fluid at  
the outer probe causing motion towards the wall a t  the inner probe further 
downstream (quadrant 4). R,, at positive time delay can be interpreted in a similar 
fashion, but both correlations agree with the obvious notion that ejections move 
upstream relative to the mean flow (u < 0) and sweeps move downstream (u > 0). 

Since R,, and R,, are both skewed to positive time delay and since the tail of R,, 
is particularly long, it seems likely that the main contribution to R12( f7 )  comes from 
large-scale sweeps and the sense of the probe separation suggests that the front of the 
large-scale structure is involved. The correlation at negative time delay can therefore 
be considered as representative of ejections : the sense of the time delay here suggests 
that the back of the large-scale structure is involved. Both R,, and R,, suggest a 
burst-sweep cycle and qualitatively they do not change over nearly the whole 
boundary layer. This description is consistent with the space-time correlations of 
Kovasznay et al. (1970). These results can be usefully compared with the spatial 
correlations of Tritton (1967). 

3. Ejection and sweep structure 
Ejections and sweeps have been detected by applying the VITA+LEVEL algorithm 

to the instantaneous uv and wg signatures. The cross-wire length is about 70 v/u, in 
both layers: results are presented for y* > 250 so that they can be regarded as 
independent of wire length. Low-wavenumber measurements of s12 and w3 were made 
with a four-wire array for which ax* = 6y* = 306, Sy/S,,, = 0.065. 

The VITA+LEVEL algorithm is applied to a digitized signal, f, and uses two 
thresholds, VITH and TH, such that an event is detected if: 

f >  V I T H ~ ,  f > TH (TI;, (3.1 a, b )  

where f is the VITA average. When both these criteria are met, the level criterion 
(3.1 b) is used alone on the signal, either side of the detection point, to determine the 
beginning and end of an event. The scheme generates an identity trace, I ( t )  which 
equals unity when these criteria are satisfied and zero otherwise. The identity ratio, 
y is the average of I ( t ) .  

The most important aspect of the uv-based scheme is that the thresholds are 
universal multiples of the local value of -m. The effect of changes in threshold (in 
particular, TH which is the one that effectively determines the length of an event) 
was investigated by Morrison et al. (1989). Obviously, raw conditional statistics are 
threshold dependent, but they showed that, for example, the scalings of event 
lengths with y are independent of threshold, within sensible limits. In  the present 
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and y is typically about 0.15 in this case. Note also that powers of uv  and other 
variables satisfy the general relation : 

(3.3) 
for n 2 0, m 2 0. ' = ' represents a 'turbulent ' average whereas ' N ' indicates a non- 
turbulent average : the tilde for event averages is dropped since these are 'turbulent ' 
anyway. Further details of the quadrant analysis and summation of the averages are 
given in Morrison, Tsai & Bradshaw (1986). R:, represents the sweep contribution 

to the total R,, -- correlation. Event correlation coefficients [( -m+/(?+7+); are 
written as [-rm/(u2v2)+1+. 

Figure 7 shows event lengths, L,  calculated as the product of the first moment of 
the probability distribution function (p.d.f.) of event durations and the local mean 
velocity and scaled using v/u,. Over most of the logarithmic layer in the smooth-wall 
flow, both ejection and sweep len ths vary as yi, like the variation of the Kolmogorov 
lengthscale, 7 E (v3/e)a N y'(v/u,)z deduced by assuming local equilibrium. The p.d.f.s 

ry -- 
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are positively skewed with a mean of about 807, which, for points in the local 
equilibrium region, roughly coincides with the middle of an expected first-order 
inertial subrange. In the rough-to-smooth inner layer (y* < 400), event lengths do 
not follow a yi  variation. Further from the wall, ejection lengths do appear to do so, 
but this is fallacious since the same data scaled using (-m$ or ( - W ) s  do not show 
a yi variation, implying a change of scale and therefore significant advection and 
turbulent diffusion. In the outer layer, taking B cc u;/S and using u, as a non-local 
velocity scale (independent of y ) ,  implies that 7 is constant and directly proportional 
to d. Only sweep lengths are constant in the outer layer and then only approximately 
so. Ejection lengths appear to increase slightly above the y )  variation, a change that 
is consistent with a more rapid reduction in E than its proportionality to (m)f/8 
would imply. Morrison & Bradshaw (1989) have plotted the same event lengths for 
the smooth-wall layer as L( -m)i/v vs. y(  - m);/v, that is using a local velocity scale 
rather than u,. The near-wall yi variation persists but for y /6  > 0.2, event lengths fall 
sharply. 

Ejections and sweeps in the log-region of the smooth-wall layer are, on average, 
near a condition of energy equilibrium. They also dominate the spectral transfer of 
energy that scales on (-m)i and y ,  since the absence of spatial transport implies the 
absence of sources or sinks in the wavenumber domain. Outer-layer sweeps are, on 
average, only approximately in equilibrium and here the universal part of spectral 
energy transfer scales on ( -m)f and 6 but is weakly dependent on y .  This result alone 
illustrates the success of a sampling scheme which uses thresholds that are universal 
multiples of -m. 

Figure 8 shows the identity ratios (intermittency) of events : ejections occur more 
frequently than sweeps in the outer layer, and so contribute more to the shear stress 
there (figure 9). Ejections and sweeps make roughly equal contributions to the shear 
stress in the inner layers of both boundary layers and occur for roughly the same 
amount of time. A quadrant analysis of the uv signal without sampling usually 
indicates that an average accumulated for quadrants two and four only is about 
- 1.5 m so that our scheme, which samples about 80% of -m, has effectively 
selected about half the negative m. But the scheme is intended to maximize 
y+( -m+)i+y-( -m-)$ (i.e. event contributions to spectral energy transfer) rather 
than y + ( - W ) + y - ( - w - ) .  

In the region 0.2 < y /S  < 0.6 of the rough-to-smooth layer, most of the turbulence 
was generated on the rough surface. The event contribution to -m is constant in 
this region but roughly equal to u," at B, the measurement station. In a region of 
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FIGURE 9. uw-event contributions to ZB: ( a )  smooth; ( b )  rough-to-smooth. 0, y+W+; 
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FIGURE 10.Conventional and event-averaged s h e g  correlation coeffic3gs : (a )  smooth ; 
( b )  rough-to-smooth. 0, RTz; 0. RyZ: 0 ,  [-uz'/(u2v2)i]+; ., [ - ~ ~ / ( u ~ v ~ ) f ] - ;  ~ 3 BIZ. 
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?/( -m). Rough-to-smooth: (c) uz/(m); ( d )  vz/( -m). Symbols as in figure 10 (open symbols, 
contributions to conventional average ; closed symbols, event-averaged quantities ; -, 
conventional average). 

constant R,,,-the sampling criteria are equivalent to  one which selects periods in 
which uv/(u"v2);  is less than R,,, times the threshold. Thus the event contributions to 
R,,, are roughly the same in both layers (figure 10) but those to -UU are not, because, 
in the smooth-wall layer, about 80 % of - VB has an R,, less than the threshold, while 

Figure 10 also shows the event-averaged values of R,, (e.g. [m/(u2 v2)i]+) which are 
consistently between 0.8 and 0.9 for both layers. This implies that both ejections and 
sweeps are highly coherent and extremely efficient in transporting momentum, 
which suggests that  they are part of a larger inertial structure. This point is explored 
fully in $ 5 .  In some sense, they are a form of 'ultimate' eddy (in the way that the 
classical derivation of the inertial subrange law by an intermediate limit process 
might imply) since, although they are affected directly by viscosity, and diffuse 
slowly because of it,  they also, on average, transport momentum (not energy) very 
effectively when near equilibrium. These properties account for their persistence in 

in the rough-to-smooth layer this proportion is only about 60%. __ 



90 J .  F. Morrison, C. S. Subramanian and P.  Bradshaw 

the outer layer a t  high Reynolds numbers and are illustrated by the behaviour of 
their triple products in particular. 

Figure 11 shows the u" and v' intensities (the w-component was not measured in 
this work) and figure 12 the corresponding triple products. The use of local wo to non- 
dimensionalize the data is consistent with the spectra of figure 5 and is more general 
than the use of the wall shear stress used in the derivation of the log law. Since the 
scaling in figure 7 suggests that events are only weakly dependent on the distance 
from the wall, a local value of --m seems a sensible scaling. Furthermore, the 
universal value of ( p / p + & 3 ) / (  -ED)% (assuming the numerator to be a value for the 
active motion only), indicates that a comparison of the motion of events as a 
contribution to the wholc motion of the layer together with the motion of events 
considered alone would be worthwhile. (? is twice the turbulent kinetic energy.) The 
- most striking feature of figure 11 is the constancy of the event-averaged values of 
vz/( -ED), generally close to  unity. Now, if R,, is - 1.0 and z/(  -m) is constant and 
- equal to p ,  say: then ?/(-m) = l/p. In the case of event-averaged values of 
vz/( -ED), p is near unity whereas this is not so for event-averaged values of z/( -w) 
which show a similar trend to the corresponding conventional average. Therefore the 
reason why event-averaged values of R,, do not equal - 1 .O is primarily the inactive 
u-component motion included in these events. The contribution to both 2 and v" by 
ejections is greater than that by sweeps over the whole thickness of both boundary 
layers. The combined contribution by sweeps and ejections is about 40% o f g / (  -ED) 
and ?/(-ED), almost half their contribution to the shear stress. 

Over the whole thickness of the smooth layer, the conventional averages of the 
triple products (figure 12) are very nearly equal to the corresponding combined event 
contributions (i.e. ejections plus weeps), suggesting that ejections and sweeps 
dominate inertial transport of energy and shear stress. Since ejections and sweeps, if 
correctly detected, are by definition the active (but not necessarily universal) motion 
of the boundary layer, it appears that  &T is mostly active motion. In the rough-to- 
smooth layer, y/S < 0.1, there arc significant differences between the combined 
ejection and sweep contributions and their conventional products. In the case of & 
and 3, this is evidence of inactive diffusion in the internal layer, to a lesser degree, 
apparent in the smooth-wall data also. The near-wall ejection and sweep lengths of 
figure 7 ( 6 )  show that there is also significant active diffusion and this accounts for a 
negative value of say, i3/i3y(3/(-m)i)+ in figure lZ (h) ,  y/6<0.1.  This is not 
apparent in the same data for the smooth layer (figure 12d).  

The non-universality of ejections in the outer layer is consistent with the large 
increase above the inner-layer values in the contribution by ejections to & and 2. 
Meanwhile, the contributions by sweeps change by a small but significant amount 
and this conforms with the view that sweeps represent the near-universal motion of 
the outer layer. In  fact, the small increase in sweep contributions a t  large y/S 
probably explains why the velocity spectra of Bradshaw (1967 a )  do not collapse in 
the inertial subrange as well as those of figure 5 in the inner layer. Since the outer- 
layer ejections are far from local equilibrium, it is difficult to make any sensible 
inferences about their likely effect on any particular wavenumber range of the 
corresponding spectra. The sense of the outer-layer diffusion by ejections and sweeps 
is away from the wall and is thereforc consistent with Townsend's active diffusion. 
In  the rough-to-smooth internal layer, inactive diffusion of energy by 42" towards 
the wall is supplemented by the active diffusion of the sweeps caused by a secondary 
peak in energy or shear stress a t  mid-layer. 

The best assessment of the quality of these data comes from a comparison of event- 
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averaged statistics (e.g. [ u v " / ( - ~ ) i ] + )  with the same data expressed as a 
contribution ( y + G + / (  -TED):). I n  the smooth-wall inner layer, these two averages take 
very nearly the same values: in other words, the velocity scale for sweeps, (-ti&)$ 
is the same as that for the whole motion, namely ( - ~ ) i ,  provided due account is 
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( d )  v3/( -m)z. Rough-to-smooth: (e)-(h) in same sequence. Symbols as in figure 1 1 .  

taken of the proportion of time over which each is averaged. The implication is that 
the present results agree with Townsend’s hypothesis that the active diffusion takes 
a universal value only in a local equilibrium layer, so that in the rough-to-smooth 
inner layer, the event contributions and the event averages diverge as a consequence 
of there being no single, universal velocity scale. A single velocity scale that applies 
to ejections and sweeps alike, as in the smooth-wall inner layer, implies that: 

y+( -m+)i 1: (-m)$ N y-( -m-):, 
y+( -m+):+y-( -m): N 2( -m)” 

so that therefore : 

This obviously suggests that 

where C = 0.5. Chen & Bradshaw (1990) recommend a slightly higher threshold than 

1-2 
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the one used in this work in order to optimize agreement with visually identified 
ejections and sweeps from channel-simulation data. Clearly, a slightly higher 
threshold would imply that C N K .  The right-hand side of (3.6) implies not only that 
the universal part of spectral transfer is proportional to (-m)f/y, but also that it is 
equal to y( -?E)g/y. 

The yf dependence of event lengths suggests that a two-point vertical correlation 
of event statistics will not show any appreciable correlation. As a test of the 
feasibility of conducting two-point sampling, we generated space-time correlations 
of the zero-one identity traces, I ( t )  produced from VITA + LEVEL detections of 
simultaneous uzc signals from each of a vertical array of four cross-wires. The 
correlation coefficient is defined as : 

for sweeps, where the first subscript refers to the fixed wire closer to the wall. The 
prime denotes an r.m.s. value and replacement of the ' + ' sign with a ' - ' sign would 
denote ejections. The use of ( I - y )  ensures that the two functions (suffices p and q )  
each have a zero mean value as suggested by Kovasznay et al. (1970). The 
correlations were generated by a standard fast Fourier transform routine. The sense 
of the time delay is the same as that of figure 6, which provides a useful comparison. 
Figures 13 (a)  and 13 (b)  each show three correlations from the smooth-wall layer. The 
position of the fixed probe and the three positions of the moving probe correspond 
roughly to the four y locations at which the spectra in figure 5(a-c) were obtained. 
These correlations are appreciably smaller than those of figure 6 and, with the 
exception of the values at  the smallest separation, do not show any asymmetry in 
time that occurs in the R,, and R,, correlations. cq does show some consistency with 
R,, in figure 6, but cq is confusingly the same as the sweep correlation. 

It is evident that our events represent only part of the integral scales of motion. 
The smallness of the correlation also implies that individual events are not very well 
correlated with each other. This is probably partly due a t  least to the fact that no 
attempt has been made to change the probe positions relative to each other to 
account for likely burst trajectories. 

3.2. w,-Conditioned statistics 
Figure 14 shows event lengths generated by applying the VITA + LEVEL algorithm to 
the w3 signature in the smooth-wall layer. Events are sorted according to the sign of 
w3 at the event centre with the additional requirement that uv < 0 at that time also. 
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This is justified on the argument that we are concerned only with the negative-uv, 
active part of the motion. In  fact, removal of the _ _  uv criterion did not _ _  reduce the 
contribution by events to m alt,hough [m/(u2v2)i]+ and [m/(u2v2)f]- were 
approximately halved by its exclusion. The effect of the additional uv criterion is 
therefore to improve the coherence of the educed structures. Event-averaged values 
of R,, are generally 0.6 to  0.7 and events make up approximately 40% of -TED. 
Event-averaged triple products do not appear to be as useful as those of figure 12, 
but it is not possible to say whether this is a genuine conclusion or a feature of only 
low-wavenumber sampling of w3.  

The yf variation is again apparent, but only for y* c 900 (y/S < 0.19), and at larger 
y*, (w3 < 0)-event lengths follow those of ejections while (w3 > 0)-event lengths 
follow those of sweeps in figure 7(a ) .  This suggests that negative w3 dominates in 
ejections while positive w3 dominates in sweeps. This result is consistent with our 
physical description of ejections and sweeps in the next section. The tendency of 
event lengths to a constant value at  a lower y* than in the case of figure 7 ( a )  is 
consistent with using a hot-wire array which is intended to resolve only the outer- 
layer large-eddy processes controlled by a constant lengthscale. 

3.3. Physical description of ejections and sweeps 

Assuming that, in the outer layer, E cc u:, it follows that TUJV cc (u,S/v)i, and that 
~ / S G C  (u ,S/v)- f .  The same results are derived for the log region if ~ c c u ; / y  and 
y/S = constant. Figure 15 shows our uv-sampled event lengths taken a t  a constant 
value of y/S = 0.084 in both layers, as well as in the smooth layer a t  a slightly lower 
Reynolds number. Both ejections and sweeps suggest a (u,S/v);  dependence in figure 
15(a) and a (u,&/v)-f dependence in figure 15(b) because event lengths are 
proportional to 7. The rough-to-smooth data deviate from these scalings because log 
region events are not in equilibrium. Thus the use of a single length and velocity scale 
used in our estimate of E is not valid. 

Also plotted in figure 15(b)  is the variation of the 'most-probable' outer-layer 
turbulent-zone length estimated by Murlis et al. (1982) using a temperature-based 
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scheme. Most interestingly, we have also plotted Falco's (1974) estimates for the 
streamwise and vertical dimensions of the typical eddy, C,  and C, respectively. We 
originally assumed that, for all three data sets, u, S/v cc (U,  Olv)!, which Coles' (1962) 
data show to be approximately true. However, we are indebted to one of the referees 
for pointing out that, for Re, > 3000, the assumptions that u,&/v cc Re!.s2 is a better 
fit to both Coles' and newer data. With this assumption, the agreement in figure 15 (b) 
between L/S  cc (u,S/v)-f and the other authors' data is improved, the agreement 
being best for Falco's values of C,. 

Figure 16 shows ensemble-average time-histories for ejections and sweeps obtained 
by applying the VITA + LEVEL scheme to the uv signal obtained from a four-wire array 
which can also give estimates of w, and s12. (The array used is the same as that for 
the w,-sampled data of the previous section.) The traces of all the gradient quantities 
do not change qualitatively with y/S, even for data outside the log region. Figure 17 
is a sketch of a typical eddy taken from Falco (1979, figure 10) with qualitative 
w,, s12 and uv signatures for the top lobe superimposed. The thick solid line is the 
outline of the upper lobe, the thick dashed line is the outline of the lower lobe which 
Falco usually observed with the upper lobe. The appearance of both lobes is 
consistent with a cut through a vortex ring in the (x, y)-plane. The large peaks in w, 
and s12 in figure 16 (b) coincide with those for the top lobe of the typical eddy in figure 
17. Our signals also show secondary peaks ( + w 3  and -s12 just upstream and 
downstream of x = 0 respectively) that correspond to the expected signals for the 
lower lobe. 

The distinguishing feature of sweeps (figure 16a) appears to be that the vorticity 
is increasing (with x) through the large negative peak in uv. This would correspond 
to the reflection of the typical eddy about the line joining the two centres of vorticity, 
and sweeps look as if they are inverted mushrooms moving down towards the wall. 
The signs of vorticity are what one might expect as a result of high-speed fluid 
moving toward the wall and being flattened by fluid of lower streamwise momentum 
or the wall itself, as in the early stages of pocket evolution. Based on these ensemble- 
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FIQURE 17. Sketch of 

Signal amplitude I Y  

1 1  
\ I  

\ I  

?' 

I I  

typical eddy (bold lines) with representative signals 
as in figure 16. 

(after Falco). Signals 

averaged time-histories alone, both ejections and sweeps appear to have a vortex 
ring-like structure as suggested by Falco (1983, 1984). Because the signals 
representative of the lower lobe in an ejection and the upper lobe in a sweep are 
smaller than those on the other side of the peak in uv, it is possible that the 
hypothesized vortex ring is not always complete, that is, the hairpin vortex does not 
always pinch off completely. Furthermore, the large negative peak in w3 in the top 
lobe of an ejection becomes the large negative peak in wg in the lower lobe of a sweep : 
this implies a t  180° clockwise rotation (as in figure 17) for an ejection to become a 
sweep, that is, as the eddy is toppled by mean vorticity. Falco et al. (1989) have 
recently measured joint p.d.f.s of spanwise vorticity from probes separated vertically 
but both at  y* < 30. These results indicate that the most probable combination is 
one of - w3 at the lower probe and + w3 at the upper probe, as the results for a sweep 
would suggest. Introduction of positive vorticity at  the wall initiates a pocket. 
Irrespective of whether pinching occurs or not, both these results and those of the 
previous section indicate that negative w3 dominates in ejections while, in the case 
of sweeps, positive wg is at  least larger than in an ejection at the same y*. Apart from 
the striking similarity of our signals with those of Falco, the peaks in uv are also 
consistent with the simulations of Kim (1985), who found large uv at the tips of 
hairpins, and those of Moin et al. (1986). In this case, they noted that peaks in uv 
occurred just downstream of their vortex ring. 

4. Ejections, sweeps and energy equilibrium 
Figure 18 shows estimates of the total production together with the sum of the 

spectral transfer effected by uv-events as given by the left-hand side of (3.6). In the 
smooth-wall layer, only for y/S > 0.1 do uv-event contributions underestimate the 
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y/S C (equation (3.6)) 

0.051 0.48 
0.069 0.49 
0.103 0.48 
0.170 0.55 

TABLE 1 .  Estimates of the von Karman constant in smooth-wall boundary layer 

total production. The use of (3.6) in the rough-to-smooth inner layer gives an 
overestimate of the production because of sweep diffusion towards the wall: the 
sweep velocity scale, (-m+)i, is still affected by the peak in -m at mid-layer, a relic 
of the rough-wall turbulence. The secondary peak a t  mid-layer in figure 18(b) is also 
caused by the larger rough-wall skin friction : both ED and XJ/ay are increased here 
as a consequence. 

The validity of (3.6) can be examined by rearranging it to give: 

where the dissipation length parameter L, is defined as (-m)’/s and the left-hand 
side of (3.6) is used as an estimate for E .  In the logarithmic region, the bracketed term 
in (4.1) (C in (3.6)) should equal the usual value of the von KSrman constant ; these 
values are given in table 1. The local equilibrium approximation ignores inner-layer 
diffusion, of course, and the advection is even smaller. Therefore the numerator, and 
possibly the denominator in (4.1), contain the effects of spatial transport which acts 
as a source or a sink at  each wavenumber. However, most of the diffusion is universal 
so that K can be expected to be invariant from one local-equilibrium flow to another. 
Equation (4.1) also raises the question of the Reynolds-number dependence of K : this 
will be addressed in $5.  

Another definition of a lengthscale for energy transfer is the eddy dissipation 
lengthscale, L, = = a;gLT where a, = -ED/?. By analogy with L,, we define 
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ejections ; A, conventional : L, = 0.095 a;l yQ. ---, best fit line to L: and L; (y/S < 0.2) for which 
a, = 0.144. 

as a sweep lengthscale, where the numerator is an approximation to  ;?"'. L; is the 
equivalent lengthscale for ejections. The purpose of using L: and L; is that they are 
defined by event statistics alone, and can be usefully compared with L,. This is shown 
in figure 19. For the smooth layer, L, is derived from the distribution of L, given by 
Bradshaw, Ferriss & Atwell (1967) using the value of a,  = 0.15 which they also used. 
The solid line represents the best fit to L,+ and L; for y/6< 0.2 and for which 
a, = 0.144 when K = 0.41. This can be regarded as a value of a ,  for the active motion 
only. L: and L; closely follow the local-equilibrium approximation to L, out to 
y/6 N 0.3, and thereafter, L: and 1; begin to diverge. L,f and L; are qualitatively 
similar in the rough-to-smooth layer although the agreement with the local- 
equilibrium definition of L, for approximately y/6 < 0.2 is not good, especially in the 
case of LEf. These results confirm what has already been gleaned from the event 
lengths of figure 7. I n  figure 19(b), the variation of L: and L; is qualitatively similar 
to that of the mixing length measurements of Antonia & Luxton (1972), and lie 
significantly above the local-equilibrium definition of L,. 

An alternative interpretation of K can be obtained by assuming that L, = L: = L; 
as indicated in the local-equilibrium region of the smooth-wall layer. It follows that : 

K = (a,/a:)i = (a,/a;);, (4.3) 

where the superscripts denote ejection and sweep values. In this case, 1/K can be 
described as the ratio of the efficiency with which ejections or sweeps (or both) 
transport momentum (not energy) relative to the active flow as a whole: 

a: N a; z 0.26 for y/6 < 0.2 

in the smooth-wall layer. 
The use of a, = 0.144 for all values of y in the log region implies that L, refers to 

the active motion only: measured values of a, drop sharply for y/6 < 0.1 because of 
inactive motion. Crudely speaking, equations (4.3) are the equivalent definition of K 

in physical space to that used in (3.6) for wavenumber space. Substitution of (4.3) 
into (3.6) gives 

y+(p)t+y-(p)t = (z):, (4.4) 
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where the right-hand side refers to the active motion only, as a,  does in (4.3). The 
common feature to the two definitions of K is that  they both express a quality of 
ejections and sweeps relative to the active flow as a whole. 

Outer-layer results so far presented show that sweeps are the near-universal 
motion of the outer layer, scale on ( -m)i and 6, and effect only a small degree of 
spatial energy transport. Our results indicate that 

(4.5) 

in the outer layer of the smooth-wall layer where L,f = 6/y+. In other words, if the 
outer-layer flow consisted entirely of sweeps (i.e. y++ l) ,  then the right-hand side 
would give an estimate of the total production with less than 10% error except a t  
thc largest y/6 where the error is 39% and sampling uncertainties high. At the 
largest y/6, sweeps occur for less than 1 %  of the time anyway. Equation (4.5) 
suggests that sweeps (and not ejections) effect the near-universal component of 
spectral energy transfer in the outer layer. Not only is the energy transfer 
proportional to (-m)j/6, but it is actually equal to ( -m+);/S, when averaged only 
for the time during which sweeps are present, and y+( -m+)!/&, when averaged for 
the whole time. Thus, (4.5) is the outer-layer equivalent of (3.6) for the log region. 
However, in the outer layer, there are no simple approximations that can be made 
about the energy balance: thus L: is a function of y+ which, unfortunately, is not 
universal for a given threshold because e is not universal. Only if sweeps occupy the 
whole of the outer-layer motion does the energy balance reduce to the local- 
equilibrium approximation and Lf = 6 and L,f = (a:)-;/&. The lengthscale of ejections 
in the outer layer is increasing rapidly (recall figure 7) and this suggests that  their 
contribution to the spectral flux is much diminished by advection or diffusion which 
act as a net sink at wavenumbers in and above the near-universal range. Equation 
(4.5) does not include a term for ejection energy transfer because of this. I n  fact, 
figure 19 (a )  shows that a: is approximately constant in the outer layer also (certainly 
more constant than a;) and, assumin that the spectral transfer of energy effected 
by ejections is small, then E cc ( -m+)z/6.  Thus L,f is constant in the outer layer. 

4 

5. Discussion 
Figure 20 shows correlation lengthscales calculated from R:u, and R,, (i.e. event 

contributions to  the conventional correlation non-dimensionalized by conventional 
r.m.s. quantities) where T is the fluctuating wall shear stress as measured by a hot 
wire mounted in the sublayer. See Morrison & Bradshaw (1989) for details. Thus 

and the arrows denote estimated errors due to non-zero correlation at maximum time 
delay. For y < 0.26, L;uv is proportional to y while L:%, is not. The straight-line fit 
through the data is not imposed at the origin since inactive ‘contamination’ of 
sampled events implies that  L,, does not tend to zero as r2+0 .  

These data and those of figure 19 illustrate the major difference between ejections 
and sweeps, or more accurately, the inertial structures associated with them. The 
former conform to Townsend’s (1976) description of attached eddies, namely : ( a )  
that  the average eddy size is directly proportional to the distance from the wall, and 
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FIGURE 20. Correlation lengthscales, L,,, (a )  smooth, ( b )  rough-to-smooth : 
, sweeps ; 0, ejections. 

( b ) ,  that most of the production and dissipation of energy is concentrated a t  the 
‘centre ’ of the eddy. Moreover, ejections provide most of the difference between the 
production and dissipation of energy in the outer layer, this being diffused from the 
inner layer. Ejections therefore control the interaction (in terms of energy, a t  least) 
between the inner and outer layers. Comparison between the conditional statistics of 
the present work and the flow-visualization results (at low Reynolds numbers) of 
other workers is inevitably tenuous. However, it seems appropriate that, at this 
stage, the inertial structures associated with ejections be called bursts because they 
appear to have the dominant characteristics identified by Kline et al. (1967) and Kim 
et al. (1971). 

On the other hand, although sweeps are large-eddy ‘centres’ where the inertial 
transfer of energy is concentrated and which primarily control the distribution of 
shear stress along with ejections, t,he associated large eddy produces large, low- 
wavenumber fluctuations in the u- and w-component motion near the wall which fits 
Townsend’s description as being inactive. See Morrison and Bradshaw (1989) for 
further results. The correlation lengthscales for the rough-to-smooth layer are less 
conclusive, partly because of the shorter non-dimensional time delay in the 
correlations but also because of the lack of data close to  the wall, i.e. y/S < 0.05. 
However, these data do show that i t  is unlikely that L,, is proportional to y and in 
general, the variation of L;uv with y is not noticeably different from that of L:%,. This 
result, and those for LE+ and L; in the rough-to-smooth layer (figure l Q b ) ,  illustrate 
the insensitivity of the mean motion to changes of scale: in the log region of the 
rough-to-smooth layer, in which the local equilibrium approximation is invalid, there 
is no single dominant velocity scale, in spite of which, the log law (figure 2) still 
appears to hold. 

Figure 20 (a)  suggests that the inertial structures associated with ejections are the 
true universal motion of the inner layer that scales on y and u, or ( -m): (or (-m-)i) 
and that therefore this motion does not contribute to the inactive motion nearer to 
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the wall. Furthermore, at  y/6 N 0.2, L& begins to decrease as y increases. Outer 
layer ejections are growing rapidly owing to the effects of advection, and the loss in 
correlation with the wall shear stress implies that they have become ‘detached’. The 
division of eddies into attached and ‘detached’ or freely moving ones is also 
suggested by the zonal analysis of Fung et al. (1991) applied to the DNS database for 
the low-Reynolds-number channel flow of Kim et al. (1987). Thus, assuming that 
inactive motion is only caused by ‘detached ’ eddies with ‘centres ’ further from the 
wall than the point under consideration implies that Townsend’s (1976, p. 154) 
equations : 

I - 

should be modified so that the log terms (attributed to the inactive motion from 
attached eddies) include geometry-dependent functions of y/6 and u,. Spalart (1988) 
reaches a similar conclusion. This analysis is consistent with the replacement of 
Townsend’s double-cone eddy (whose diameter scales on y) with a hairpin vortex 
whose diameter scales on V / U ,  and is proportional to 7 and therefore to yi. 

Bradshaw (1967 b )  showed that the energy balance for the inactive motion in the 
inner layer can be written as: 

advection = diffusion + dissipation. (5.3) 
The results of 83.1 show that the turbulent diffusion term, a/ay (&T) for the 

inactive motion is small: the pressure-diffusion term is discussed by Morrison et al. 
(1992). Ejections diffuse energy from the inner to the outer layer and provide the 
local source of inactive motion. Since advection is small near the wall, the main loss 
of turbulent energy is the outer-layer advection. Additionally, low-wavenumber 
energy is transported back to the wall by the large-scale inertial eddies associated 
with sweeps (usually referred to as ‘splats ’) which cause extra direct dissipation in 
the sublayer. Bradshaw showed that this extra dissipation (in addition to the near- 
wall advection) is very small so that the inactive energy transported by splats, of 
which sweeps are a part, is also small. There are therefore two, related sources of 
inactive motion, both principally caused by splats. The first is low-wavenumber 
velocity fluctuations in the inner layer, caused by these large eddies, and to a lesser 
extent by the rest of the outer-layer motion. Splats also cause values of event- 
averaged fluctuations of u, to increase sharply in the inner layer (Morrison & 
Bradshaw 1989). The second is pressure fluctuations a t  y* < 30 caused by the 
splatting mechanism (Moin & Kim 1982) in which splats form pockets in and just 
above the sublayer, and by which v-component energy is transferred to the two 
horizontal components. The $22 pressure-strain tensor becomes negative at  about 
y* = 20, implying loss of energy from the v-component (Moin & Kim 1985 ; Mansour, 
Kim & Moin 1988), while static pressure fluctuations reach a maximum there 
(Spalart 1988). 

The weakness of (4.1) as an estimate of K is obviously that the denominator of the 
right-hand side is apparently threshold-dependent although we have not checked 
this for small changes in threshold about the one used. However, to reiterate, Chen 
& Bradshaw (1990) recommended a threshold very close to the one used in the 
present work. Contraction of (4.1), (4.3) and (4.4) provides a more concise definition 
of K .  Summation of ejection and sweep contributions in these equations gives 



104 J .  F .  Morrison, C .  X. Xubramanian and P .  Bradshaw 

(5.4) 

(5 .5)  

respectively. is the value of a, for ejections and sweeps combined. Equations (5.5) 
and (5.6) are not suitable for the estimation of K and y since values of a", and are 
made inaccurate by event-averaged values of 2 that are ' contaminated ' with 
inactive motion, i.e. u-component motion mis-selected by the scheme as shear- 
stress bearing. Besides which, there is no objective way of estimating a, and ? (for 
the active motion only). In  the log region, the total shear stress, T z - p m  and 
aT*/ay* c 0 but aT*/ay* + 0 as Re,+ 00, where ' * ' denotes non-dimensionalization 
with T,. Thus -ZU* increases and tends to unity as Re,+ CO. (Huffman & Bradshaw 
(1972) explained any apparent variation in K with Reynolds number as a change in 
the additive constant in the log law caused by non-zero aT*/ay*.) Similarly, as the 
Reynolds number increases, the influence of sources or sinks in a first-order inertial 
subrange diminishes and, in the limit, the spectral transfer of energy equals the 
dissipation. In other words, -ZU* can also be expected to increase. The present 
results are therefore not especially helpful in determining whether K is Reynolds- 
number dependent or not. However, they do suggest that it is the universal spectral 
flux that determines K and that violations of the local equilibrium approximation will 
cause K to change, as (2.3) might suggest. Spalart's (1988) simulation data obey the 
local equilibrium approximation accurately for y* > 40. Thus 

€* = -m* au*/ay* = 1 / K y *  

is universal and therefore so is K a t  constant y*. Note that (5.4) is independent of non- 
universal forms of spectral flux (see Lumley 1964). 

In $2, we introduced the concept of a first-order inertial subrange, for which a 
sufficient condition is that  energy sources and sinks in the range are a small fraction 
of the spectral energy transfer. If this range coincides with a local equilibrium region 
at  sufficiently high Reynolds numbers (Re, > loo), then the small effect of sources or 
sinks in wavenumber space can be attributed to the small spatial transport ofenergy. 
The collapse of the conditionally averaged triple products for, say, sweeps on (-m+)g 
and ( -m): /y+ in the log region, and the fact that the spatial energy transport is 
small there suggests that  ejections and sweeps effect virtually all the universal part 
of the spectral energy transfer, eject,ion and sweep lengths in the smooth-wall log 
region (figure 7 a) corresponding approximately with wavenumbers near the middle 
of the first-order inertial subrange. Thus, (3.6) and (5.4) define K .  Coincidence of a 
first-order inertial subrange with local equilibrium implies that  this definition has 
an analogue in physical space: this is given by (4.3) and (5.5) and arises because 

Although the results neither confirm nor deny any non-universal behaviour in K ,  

they do show that it really depends on the universal part of the spectral energy 
transfer (equation (5.4)) or equivalently derives from the local equilibrium 
approximation (equation (5.5)). Since application of wall scaling to the complete 

L, = L,+ = L;. 
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energy equation leads to the local equilibrium approximation, it may equally be 
supposed (as is perhaps more common the case) that K is the constant appearing in 
the dimensional analysis for the log region, y* > 30, y/S < 0.2. 

6. Conclusions 
Event-averaged statistics from the uw-based sampling scheme, in particular event 

lengths and triple products suggest that ejections and sweeps in the log region are 
responsible for virtually all the universal part of spectral energy transfer. Moreover, 
the energy transfer appears to be localized in physical space in the form of Falco’s 
typical eddies and also in wavenumber space in the form of a first-order inertial 
subrange, for which a sufficient criterion is only that local sources and sinks are a 
small fraction of the inertial transfer. If the inner-layer motion consisted entirely of 
ejections and sweeps, the dissipation lengthscale, L,, for the universal motion would 
be equal to y and not to KY. 

The inertial eddy of which an ejection is the ‘ centre ’ gives correlation lengthscales 
that are directly proportional to y and is therefore the true universal motion of the 
inner layer and corresponds to Townsend’s attached eddy. Once in the outer layer, 
ejections appear to become ‘detached’ and to effect most of the outer layer diffusion 
of energy. Thus it is principally ejections that control the interaction of the inner and 
outer layers (as Kline et al. originally suggested), and therefore the value of u,. All 
the evidence suggests that there is strong correspondence between visually observed 
bursts and attached eddies (as detected here), and we therefore regard them as 
synonymous. 

Sweeps appear to be inverted typical eddies moving back down towards the wall 
and are mirror images of ejections about the line joining the two centres of vorticity. 
Outer-layer sweeps are the near-universal constituent of the motion where, if the 
motion as a whole were in equilibrium and consisted purely of sweeps, the 
appropriate dissipation lengthscale would equal S. Although sweeps are part of the 
universal motion in the inner layer, the associated large eddy, a splat, which is 
‘detached ’ and scales on S and u,, induces inactive motion. This takes two forms : the 
low-wavenumber velocity fluctuations that are superimposed on the universal 
higher-wavenumber motion and, as the eddy approaches the wall, pressure 
fluctuations produced by the splatting mechanism a t  y* = 2&30. Inactive motion is 
also shown to be dependent on the distance from the wall, even in the logarithmic 
region. 

The present work demonstrates the importance of a first-order inertial subrange (a 
wavenumber-domain equivalent of the local equilibrium approximation) : in 
particular, K is shown to depend on the universal part of the spectral flux and this 
quantity rather than deductions from a Clauser plot is more likely to show any non- 
universal behaviour in K .  An important implication of these results is that the 
universal spectral transfer is localized in wavenumber space (even at the relatively 
high Reynolds numbers of these experiments) and is described by the simple 
constitutive relations, equations (5.4)-(5.6) which can be used as the basis of a sub- 
grid scale model for large-eddy simulations. These relations explain the success of 
several workers in being able to obtain apparently good results with a cut-off in the 
first-order inertial subrange without the need for a true inertial subrange with local 
isotropy (Ferziger 1977). The same comments apply to ‘ split-spectrum ’ modelling 
techniques in Reynolds-averaged calculations. 
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